

CLIC DM studies

Ulrike Schnoor, J.-J. Blaising, P. Roloff

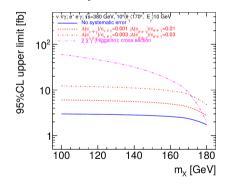
2020-06-17

Dark Matter limits at CLIC in a simplified model

- \triangleright Simplified Dark Matter model introduces dark matter candidate χ_d and mediator particle:
 - spin-1: vector or axial-vector
 - spin-0: scalar

Whizard model file prepared by Andrea Wulzer according to http://feynrules.irmp.ucl.ac.be/wiki/DMsimp

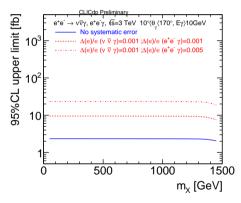
- ► Couplings in the model:
 - dark matter coupling to mediator
 - couplings of mediator to leptons and quarks
- ▶ Process: $e^+e^- \rightarrow \chi_d \chi_d \gamma$
 - Cross section depends on masses of mediator and dark matter particle
 - ▶ ⇒ mono-photon signature



Existing study for monophoton sensitivity at 380 GeV

Study by J.-J. Blaising [CLIC Physics potential YR 1812.02093, ch. 5.1]

- ► Full simulation including beamspectrum and ISR
- Relevant backgrounds: $e^+e^- \rightarrow \nu \bar{\nu} \gamma$ and $e^+e^- \rightarrow e^+e^- \gamma$
- ► Based on 1 ab⁻¹ at 380 GeV
- Cuts on the final state photons: E > 10 GeV. $10^{\circ} < \theta < 170^{\circ}$
- Systematic uncertainty: Bhabha scattering normalisation
 - dominated by forward electron tagging efficiency
 - here considered for the total background
- Exclusion limits based on the cases with uncertainty of 0.3% and without systematics



Existing study at higher energy: 3 TeV

- Use generator-level cross sections to extrapolate to 3 TeV (J.-J. Blaising)
- radiative Bhabha background $e^+e^- \rightarrow e^+e^- \gamma$ decreases by a factor of 10 between 380 GeV and 3 TeV
- → better reach is expected at 3 TeV
- ► Exclusion limits based on the cases without and with larger systematics

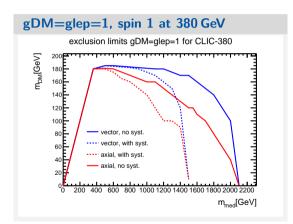
J.-J. Blaising

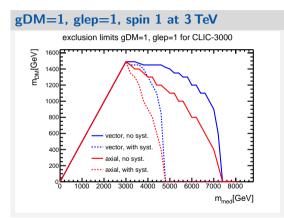
Recast to exclusions in the plane of mediator vs. DM mass

Obtain different cross sections for

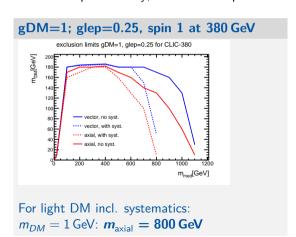
$$e^+e^- \rightarrow \chi_d \chi_d \gamma$$

for different masses of the mediator and the dark matter candidate


- Recast the limits on cross sections obtained in the existing monophoton analyses at 380 GeV and 3 TeV to this model
- ▶ Cross sections determined with Whizard 2.7 including ISR and CLIC beam spectrum
 - \blacktriangleright Using the same cuts, i.e. on the final state photons: $E>10\,\text{GeV},\,10^\circ<\theta<170^\circ$
 - No beam polarisation
- ightharpoonup Width of the mediator always fixed to the default value of WY1 = 10 GeV
- Various cases of couplings considered:

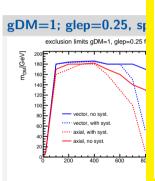

Lepton to mediator $g_{lep} = 0.1, 0.25, 1$ Mediator to dark matter $g_{DM} = 1$

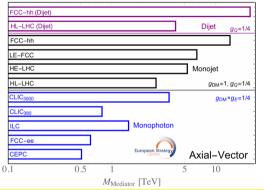
Vector and axial-vector mediator

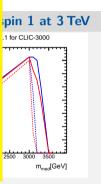

- ► Exclusion range increases from 1500 GeV to almost 5000 GeV from CLIC-380 to CLIC-3000
- Systematic uncertainties have a large effect in particular for light DM

LHC-like coupling points

► LHC DM limits: $g_q = 0.25 \rightarrow \text{transfered to lepton colliders: } g_{\text{lep}} = 0.25$ (for prospects comparison only; not the same point in the model)


For light DM incl. systematics: $m_{DM} = 1 \text{ GeV}$: $m_{\text{med}} = 3200 \text{ GeV}$ extrapolated to $g_{\text{len}} = 0.25$: $m_{\text{axial}} = 3800 \text{ GeV}$

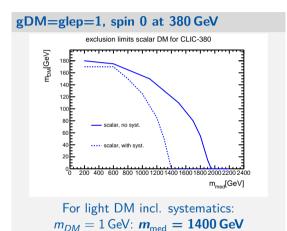

LHC-like coupling points

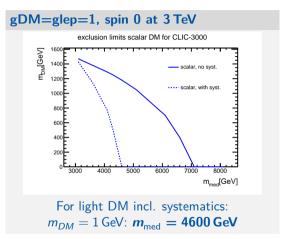


▶ LHC DM limits: $g_a = 0.25 \rightarrow \text{transfered to lepton colliders: } g_{\text{lep}} = 0.25$ (for prospects

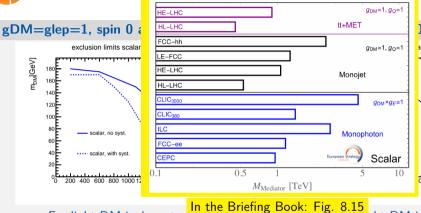
comparison only;

In the Briefing Book: Fig. 8.15 incl. systematics:


For light DM incl. systematics: $m_{DM} = 1 \text{ GeV}$: $m_{avial} = 800 \text{ GeV}$


 $m_{DM} = 1 \text{ GeV}$: $m_{med} = 3200 \text{ GeV}$ extrapolated to $g_{len} = 0.25$: $m_{axial} = 3800 \text{ GeV}$

Scalar Dark Matter candidate



Scalar Dark Matter candidate

For light DM incl. systematics. $m_{DM} = 1 \, \text{GeV} : \, m_{\text{med}} = 1400 \, \text{GeV}$ ght DM incl. systematics:

 $m_{DM} = 1 \, \text{GeV} : \, m_{\text{med}} = 4600 \, \text{GeV}$

Conclusions

- ► Dark matter sensitivity in monophoton studies for CLIC was provided to the European Strategy based on a fast simulation study
- Currently: reviewing the CICdp performance for DM searches at 3 TeV using electron beam polarisation (Jean-Jacques Blaising)
 - different beam polarizations allow a reduction of systematic errors leading to a significant improvement of the sensitivity
 - ▶ planning to use the same benchmark models (UFO full compatibility Whizard 2.8.2/3)
 - results will be made public when ready